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ABSTRACT

This paper presents two new strategies that can be usedatlygrmaprove the speed of connected component labeling
algorithms. To assign a label to a new object, most labellggrahms use a scanning step that examines some of its
neighbors. The first strategy exploits the dependenciesgrine neighbors to reduce the number of neighbors examined.
When considering 8-connected components in a 2D image;ahiseduce the number of neighbors examined from four to
one in many cases. The second strategy uses an array torst@egtivalence information among the labels. This replaces
the pointer based rooted trees used to store the same egeahformation. It reduces the memory required and also
produces consecutive final labels. Using an array basegbidif the pointer based rooted trees speeds up the connected
component labeling algorithms by a factor o£5L00 in our tests on random binary images.
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1. INTRODUCTION

Our goal is to speed up the connected component labelingitlgs. Since connected component labeling is a funda-
mental module in medical image processing, speeding it ygaxes the turn-around time of many medical diagnoses
and procedures.? Improving these labeling algorithms also benefits othetiegions in computer vision and pattern
recognition® ® Given an image, connected component labeling assignsslébal pixel such that adjacent pixels of the
same features are assigned the same label.

In this paper, we only consider the problem of labeling bjriarages stored as 2D array of pix&3! Such a binary
image is typically an output from a preceding image analgt@p that has identified pixels of specific features. Lingitin
to 2D binary images allows us to isolate the connected compiolabeling problem for a more detailed study. The
techniques discussed in this paper can be easily be applisases where the labeling procedure is integrated into othe
analysis. To further limit the scope of this paper, we onlg 8sconnected components of 2D images for our experiments
and illustrationg. ' The approaches used in this paper should apply to highemdimeal images as well.

In a paper by Suzuki et al!, approaches for connected component labeling are categoairizo four groups: (1)
methods by repeated passes over the data, (2) methods ofsgsepover the data, (3) methods using hierarchical tree
equivalent representations of the data, (4) parallel #lyos. These approaches share one common step, known as the
scanning step, which examines the neighbors that havedgltesen assigned a label to determine a label for the current
pixel. The methods in the first group simply repeat this saganstep back and forth until each pixel has a stable label.
Most of these methods can be implemented in-place withguadditional work space. However, the number of iterations
could be arbitrarily high. An efficient variations of thissd@ approach is an algorithm by Suzuki et'al. which uses an
additional array to store some label equivalence inforomati

A general approach to handle the label equivalence infoomad to use Union-Find algorithms with pointer based
rooted trees? 1213 The second group of methods generally take this approacky $tan the image once to assign
provisional labels and establish equivalence informatand pass through image again to assign the final labels. An
algorithm by Fiorio and Gustedt is a representative we ofadomm this groupg? In this paper, we concentrate on
strategies to improve the first two groups of methods andnailldiscuss any image format issues or parallelizatioressu

A shortcoming of the pointer based rooted trees is that the to manage the pointers and the associated dynamic data
could easily dominate the whole labeling algorithinRecently, Chang et al. proposed a new labeling algorithradbas
contour tracing, which they show to be more efficient thantrknewn algorithms.
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Arie Shoshani: E-maifrie@Ibl.gov
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Figure 1. The masks and the neighborhood of pigelNotice that all the pixels in the forward and backward scasks are in the
neighborhood of pixeb.

To improve speed of the labeling procedure, we propose tiatesfies; the first reduces the number of neighbors exam-
ined during scanning steps and the second reduces the ddsiof-Find algorithms. The pattern formed by the neighbors
scanned already plus the current pixel is callegtan mask! see an illustration in Figure 1. The first strategy comes
out of a realization that the neighbors in a scan mask arexdependent. When considering 8-connected components, all
pixels in the scan mask are neighbors of one of them. Withagpjate supporting data structures, only one neighboring
pixel is needed to determine the label of a new pixel. Thisredice the number of neighbors examined from four to one.
Clearly, this is not the case for every pixel, however, therage number of neighbors scanned is usually less than four.
For 2D images, this approach does not apply to the 4-conthect@ponents. However, for high dimensional images, the
potential gain of exploiting the similar dependency can &g/ significant.

The second contribution of this paper is that we implemeribbirind algorithms with an array rather than pointers.
Our implementation uses less memory than the usual poiatathimplementations. More importantly, it significangy r
duces the overall execution time of the labeling algorithtinen all data structures fit into memory, the labeling aldponi
with array based Union-Find is about five times faster thansimilar algorithms with pointers. If the memory is smaller
the difference can be much more dramatic.

This paper does not provide a rigorous analysis of the neategfies. To verify their correctness, we implemented a
number of different algorithms with and without our new pospd strategies. In addition, we implemented a version of
the algorithm based on contour tracing. Unlike the origiora¢ proposed by Chang et al., our implementation does not
copy the image into a larger arryln fact, we require no auxiliary storage at all. We also impésited Fiorio’s algorithm
without the flatten step that comes after scanning every'finélhe flatten step was crucial in the theoretical analysis,
however, in practice, removing it usually speeds up thelilagp@rograms. We also implemented a labeling algorithn tha
first connects pixels into blockS. On the set of random images we tested, this block scan agpouees not outperform
the pixel based scans because there are very few large blocks

The rest of this paper, describes the above mentionedgitratas modifications to existing labeling algorithms. In
Section 2, we describe how to modify the scanning phase d@lgoithm by Suzuki and others. In Section 3, we describe
how to modify Fiorio’s algorithm to use an array based Unkond. In Section 4, we describe a modified version of Chang’s
algorithm and a block based algorithm similar in spirit toadgorithm by Shima et al? Performance measurements are
given immediately following the description of the modifigldorithms. A short summary is given in Section 5. Pseudo-
code segments of the array-based Union-Find algorithmgieee in the appendix.

2. REDUCING THE NUMBER OF NEIGHBORS SCANNED

In this section, we briefly review Suzuki’'s algorithm and chitse a decision tree to exploit the dependencies among the
neighbors. The decision tree allows us to reduce the nunflmaighbors examined during the scanning steps of Suzuki's
algorithm. We will also describe the test setup and perfeigeaneasurements.

2.1. Outline of Suzuki’s Algorithm

To show how to use the decision tree, we describe a partienkmple, i.e., applying it to the algorithm proposed by
Suzuki et al., referred to subsequently simphBagzuki’s Algorithmt! Suzuki’s algorithm performs repeated passes over
a binary image(x, y), alternating in forward and backward directions. The hyriarageb(z, y) consists of pixel values
Fo andFp indicating foreground object and background values ofitiege wherd”, > F'z. Like in the simple scanning
step, it accesses the pixels sequentially in raster scam osihg the scan mask shown in Figure 1. At the same timesgt al
updates a one-dimensional table calledlti®el connection tabl€ to memorize label equivalence information. Similar



local operations in the backward scan order are performedyube scan mask shown in Figure 1. A key feature of
the Suzuki’s algorithm is the use of the label connectionetéd reduce the number forward and backward scans. The
assignment of provisional labels not only propagates orcdm@ected components but also in the label connection.table

In the scanning step, Suzuki's algorithm determines theipianal label of a pixel at position:( y) (markede in the
scan masks of Figure 1) as follows:

FB if b(x,y):FB,
g(x,y) =4 m,(m=m~+1) ifV(i,j)e M;g(x—iy—j)=Fg,
Tonin (T, y) otherwise, wherg,,;,, (z,y) = min{T[g(x — i,y — 1)]|(i,7) € M}.

wherem is initialized to 1,(m = m + 1) increments the labek and M, denotes the region of the mask excepiThe
label connection table is updated, simultaneously witresggnment of the provisional labels as follows:

no-operation ib(z,y) = Fg,
Tlm] =m it v(i,j) € Ms,g9(x — i,y — j) = F,
T[g(.%‘ -4y _j)] = Tmin(xay) (Z,]) € JVIS,g(x -4y _.7) = Fp.

Operations on the backward scans are similarly defined vaghrapriate modifications to the formulas. See Suzuki et
al.l! for details. To save space, we refer the readers to the atigapers for other algorithms. The basic version of the
algorithm that always examines four neighbors is labeleé®4'sn the later tests. Suzuki et al. also presented an irgrto
version that examine two neighbors in most cadse¥Ve have implemented a version that mimics their proposeé\vieh
using two if-blocks rather than table lookups. In latergeste refer to this version as ‘S2'.

2.2. Decision tree

While determining the provisional label of a pibélone may always examine four neighbors, however this is ecg¢ssary

as Suzuki et al. have indicated. In fact it is possible to cedine number of neighbors examined to one. In Figure 1, it
is clear that all the neighbors in the scan masks are neighdddw. If there is enough equivalence information to access
the correct label ob, there is no need to examine the rest of the neighbors. Witmawing the correctness, we simply
present the decision tree as a way to organize the scan igperaa specific order.

Instead of examining all four neighbors efi.e., a, b, c andd, we propose to examine the neighbors according to a
decision tree, see Figure 2. Lietdenote the 2D array storing the labels andHedenote equivalence array, which was
termed the label connection talifein Suzuki's algorithm'! The three functions used by this decision tree are defined as
follows.

1. The one-argument copy function, copy(a), contains caierstent:
L(e) =E(L(a)).

2. The two-argument copy function, copy(c, a), containserstatements:
L (e) =min(E(L(c)), E(L(a))),E(L(c)) =L(e),E(L(a)) =L(e).

3. The new label function sets asL (e), appends: to arrayE, and increments: by 1.

Our modified version of Suzuki's algorithm does not repragtiee original algorithm. In particular, the provisional
label forc may be different from that of if they both pixels have value 1. In this case, using the datitee would
miss the opportunity to update the equivalence array. Tlig cause the modified version to use more iterations than
the original version. However, they usually use the samebmurof iterations and and the modified version is faster per

iteration than the original version. In the next section,psesent a different version these copy functions that waully
capture the equivalence information. In that case, we oeddrto scan the image once.
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Figure 2. The decision tree used in scanning for 8-connected neighbor

Table 1. Information about the test machines.

CPU type Clock Cache Memory OS Compiler

(MHz) (KB) (MB)
UltraSPARC 450 4096 4096 Solaris 8 Forte workshop 7
Pentium M 1500 512 512 Windows XP  Visual Studio .NET
Pentium 4 2200 512 512 Linux2.4 gcc 3.3.3

2.3. Test setup

To measure the performance of the various labeling algosttwe use random 2D binary images. If the majority of the
pixels are 0, we initializes all pixels to 0 and then uses &oum random number generator to pick a specified number of
pixels to set them to 1. Conversely, if the majority are Initializes all bits to 1 and sets some random pixels to 0. &hes
test images are generally harder to label than real medizés. However, they make reasonable test images to measure
the performance of connected component labeling algosiffim!

To ensure that our measurements are not biased by a partiaunthware environment, we have selected to run the same
test cases on three different machines listed in Table 1.a0h machine, we also choose to use different compilers.€eThes
choices should make the performance differences moreyliket to algorithmic differences rather than other factors.

Majority of the test images have either 5,000 x 6,000 pixel&¢@000 x 10,000 pixels. They vary in the number of
pixels that are 1. In all tests, the input image is overwnmitiéth labels. All algorithms leave 0 pixels as 0 and assign
a positive integer as the label of each pixel that was 1 ontinlpulater discussions, theork spacerefers to the space
required in addition to this image array. All time valuesagpd later are elapsed time in seconds. All reported tinheaga
are from a single test run and therefore may contain randamtiens due to both randomness in the test images and
random activities on the test machines. Altogether thexe2a# test cases, with 30 images with 5,000 x 6,000 pixels, 64
images with 8,000 x 8,000 pixels, 100 images with 10,000 ¥Q0 pixels and 20 images of different sizes but constand
fraction of pixels that are 1. When reporting total time oerage time, we include all 214 test cases.

2.4. Performance of Suzuki’s algorithms

Figure 3 shows the timing measurements of the three versi@szuki’s algorithm on three different machines and T&ble
shows the total time used by each algorithm on all test imagbe speedup reported in Table 2 is simply the total time
used by version S4 divided by the total time used by the mathfegsions. Our version using the decision tree is labeled
as S1. On two out of three test machines, the speedup of Sarily hgo. The improved version S2 is faster than the basic
version S4 as expected. S1 is about 20% faster than S2 ondreggav

Among the four neighbora, b, c andd in the scan mask, if none of them is 1 or only one pixel is 1, giire decision
tree will not save any time. However, if there are more tham pixel that is 1, using the decision tree may save time. In
random images, if there are more than one quarter of pixatsaife 1, using the decision tree is expected to save time. In



Table 2. Total time of all test cases used by two versions of Suzukjsrithm and the average speedup of the modified version.

S4 S2 S1
Time (sec)| Time (sec) Speedup Time (sec) Speedup
UltraSPARC 8570 5280 1.6 4490 1.9
Pentium M 1630 1280 1.3 1090 15
Pentium 4 1510 1020 15 842 1.8

Figure 3, the modified algorithm uses less time than themaigiersion if the pixels in the connected components is more
thang x 108 for 5,000 x 6,000 images @ x 107 for 10,000 x 10,1000 images. This agrees with expectation.

Since using the decision tree in the scanning step neves gase time than S2 and S4, we will always use the decision
tree in the rest of this paper.

3. IMPROVING UNION-FIND WITH AN ARRAY

In this section, we consider two options to modify the cote@component labeling algorithm by Fiorio and Gustédt.
The particular algorithm used here is Algorithm 2 in theipga The first option is to replace the pointer based rooted
trees for Union-Find with an array. The second option is toaee the flatten operation after scanning each line. This
section contains three subsections, the first two desdndalove two options and the last describes the performdnce o
four different implementations of Fiorio’s algorithm.

3.1. Array based Union-Find

We have mentioned that the equivalence afaysed in Suzuki's algorithm does not capture all equivalémfemation.
One way to improve the algorithm is to fully capture the eglénce information. The equivalence information is often
represented in as rooted trees in a Union-Find algorithmpr&enting the same information in an array provides an
alternative for Union-Find algorithm'; 14, 16-19

An arbitrary forest of trees can be suitably relabeled apdesented with an array, see an example in Figure 4. First,
nodes of these trees need to be relabeled with consecutageis. In the example shown, the first integer used is 0 to
make it directly usable as an index to an array in C/C++. Téiialreling of nodes can be done with any ordering of the
nodes. To make it easier to produce consecutive labels, &arusrdering that is equivalent to a pre-order traversdief t
trees, which labels a node before its descendants. Af@oekhg, an element of the equivalence array representde no
and the value of the array element is the index of its parems. afray can be interpreted as the same rooted trees.

Since the trees used in Union-Find typically do not contaikd from a parent to its children, the above relabeling
procedure can not be performed after the rooted trees havedoeated. However, the provisional labels generateagluri
the scanning step are consecutive integers that can be sigied imdices to arralg. This arrayE would have exactly the
same size as the label connections tablesed by Suzuki et al.!

It is relative straightforward to implement all the algbrit associated with Union-Find using an array instead of a set
of pointer based rooted trees. The detailed algorithmsigem dn the Appendix A. Next, we briefly describe how to use it
with the decision tree shown in Figure 2.

The leaf nodes of the decision tree contains three functmngw label function, a one-argument copy function and a
two-argument copy function. The new label function and the-argument copy function remain the same as before. The
two-argument copy function, copy(c, a), now contains oatestent:

L(e) = uniong, L(c), L(a)).

After the scanning step to assign provisional labels anidlimgj the equivalence array, Fiorio’s algorithm uses teesr
to assign the final labels to all pixels in the connected camepts. Using the array based Union-Find that ensures the roo
of each tree has the minimal label, we can implement a praeedalledflattenLabeln the appendix, that not only flattens
the trees but also assigns consecutive final labels to theaoemts in one single pass of the array.
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Figure 3. Timing results of two implementations of Suzuki’s algonthwhere the modified version uses the decision tree shown in

Figure 2 to reduce the number of neighbors examined.
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Figure 4. Any forest can be suitably relabeled and represented agray drhis example shows a forest with two trees and six nodes
that is represented as an array.

3.2. Removing extra flatten operations

Algorithm 2 proposed by Fiorio and Gustedt in their pdpenvokes a flatten operation after scanning each line. This
flatten operation calls the find-compress function on eveoyipional label used in the current line. The same algorith
should run correctly without the flatten operations. Wheragigular provisional label is used later, the find-compres
function would do the same job that would be performed in thtteh operation. Clearly, we don’t expect this strategy
to have very much impact on the overall performance of theliad algorithm. However, in order to support the flatten
operations, the provisional labels used in the currentrized to be stored separately. The data structures for diesis Is
created and deleted for as each line of the image is scanmadowng the flatten operations also removes these dynamic
data, which could speed up the labeling algorithms.

3.3. Performance of four versions of Fiorio’s algorithm

We implemented four variations of Fiorio’s algorithm, théginal algorithm, a modified version without any flatten ope
ation in the scanning step, a version with the array basednJrind, and a version with the array based Union-Find and
without any flatten operation in the scanning step. In Figuasd Table 3, the four algorithms are labeled as 'Original’,
'No Flatten’, 'Array UF’ and 'Array UF, No Flatten’. We do nahow the timing results oRentium M in Figure 6 to save
space. As seen in Figure 3, timing resultsRamtium M follow that of Pentium 4 quite closely, with the former typically
larger then the latter because the particBantium 4 processor has a faster processor.

The total time of all test cases is shown in Table 3. The spestown is compared with the original algorithm. We
see that in most cases, the speedup value is greater tharhioteimdicate the modified version is faster than the origina
Fiorio’s algorithm. The only exception is the version withippter based rooted trees and without flatten operationighwh
shows an average slow down of about 7% onRleatium 4 machine. From Figure 6 we see that in these unusual cases
where the modified version takes longer than the originaiger both of them take much longer than Suzuki’s algorithm.
Figure 5 shows the number of provisional labels and the faials assigned by Fiorio’s algorithms. It is clear that in
these unusual cases, the number of provisional labelsgs,laround 6 - 8 million. The array to store the labels reguire
about 400 MB. The pointer based rooted trees take four woedpvisional labél, which may take another 100 MB.
The total memory requirement is close to the main memoryaizine two Pentium based machines. In these cases, most
of the execution time is spent on swapping. The observed dlmwn might also be specific to tHentium 4 machine
because the same slow down is not observed oPé&mtium M machine. In fact, when all data fit in memory as on the
UltraSPARC machine, removing the unnecessary flatten operationsasesghe overall execution by about 55%.

The fastest version is the one with the array based Uniod-&ima without the extra flatten operations. When the test
problem size fit in memory, the average speedup is more thanificases where the image size plus work space is close
to the computer memory size, the speedup can be in the husidred

4. TWO MORE MODIFIED ALGORITHMS

In this section, we describe two more connected componkelitay algorithms, one based on a contour tracing algofithm
and the other based on a block scan algoritAin©Our version of Chang’s algorithm overwrites the input imagay with

*The four words are: (1) one for the label value, (2) one fonpmito a parent, (3) one for the weight of the tree (requid f
weighted union algorithi?), and (4) one to point the data structure for a node of theetbtrees.



Table 3. Total time of all test cases used by four versions of Fiordgorithm and the average speedup of the modified versions.

Original No Flatten Array UF Array UF,
No Flatten
time (sec)| time speedup time speedug time speedup
UltraSPARC 11100| 7160 1.55| 4000 2.78| 2040 54
Pentium M 27100 | 25000 1.08| 1320 20.5| 400 67.6
Pentium 4 5900 | 6340 0.93| 1480 3.99| 340 17.4
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Figure 5. Number of final labels and provisional labels of the test iegagSince all algorithms scan the images in the same order, th
same number of provisional labels are used.

labels and does not use any additional storage. Our blockatgarithm builds blocks from input image and uses the array
based Union-Find. This section has three subsections. Wieviio subsections briefly describe these two algorithms.
The last subsection shows performance results of theselfwathms against the best versions of Suzuki’s algoritmu a
Fiorio’s algorithm.

4.1. An in-place contour tracing algorithm

The basic principle in contour tracing is to examine all tigr pixels in a fixed order so that a neighbor on the boundary
of the same connected component is visited firsThe algorithm described by Chang et al. uses a number ofaasy
the work space. It is straightforward, although a littledeibus to implement the same algorithm without the extrakwor
space. What is needed is more if-statements to deal withixe¢éspn the boundaries of a image. Potentially, these extra
if-statements would make the algorithm run slower than tiigartal version if everything were to fit in memory. However,
for large images like those with 10,000 x 10,000 pixels, tktesework space required by original algorithm would not fit
in memory on two of the three test machines. This would ma&etiginal algorithm much slower than our version.

There are two main tricks we use to implement the in-placerélyn. One trick is to label the components starting
from 2. We assume the input image contains only 0 and 1. Us$iag/alue 2 as the minimal label allows us to easily
distinguish pixels that have been assigned a label and &thixehave not. The other trick is to treat the integer in the
image array as signed integer during contour tracing. Tiie/a to mark some of the background pixels (i.e., those With
value) with the value -1 as suggested by Chang ét &\le could have used another value instead of -1, howevepéas
to be easier to program the algorithm using -1. After all theels have been scanned, we need a second pass to reset all
pixels marked -1 to 0. We also take the opportunity to redligeoaitive labels by 1 so that the final labels starts with 1.
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Figure 6. Timing results of four implementations of Fiorio’s algdnit. The algorithms with array based Union-Find (marked &&rr
UF’) clearly require less time the those with pointers.

4.2. A block scan algorithm

Working with blocks instead of pixels has a number of obviadsantages if there are block structures in the image.

If most blocks contain more than two points, then a block@spntation would require less space. There are less objects
to scan and the scanning step may use less provisional labelsll. In our implementation, we scan each line as usual,
however, when scanning a line, we first turn consecutivelpixego blocks and store the starting position and the end
position of each block along with its provisional label. $biock data structure is used while scanning the next liddsan
discarded afterword.

In this algorithm, it may be necessary for us to perform a nrio many labels. In this case, we use the function
f i nd to compute the root with the minimal label, and then use thetionset to mark all the provisional labels involved
equivalent to the new root. This should be more efficient ttedling the pair-wise union function.

4.3. Comparing the best options

We measured the performance of the two above algorithmssighie best variations of Suzuki’'s algorithm and Fiorio’s
algorithm. In Figures 7 and 8, our implementation of the oantracing algorithm is marked as 'Chang’. The algorithm



marked 'Suzuki’ is the modified version that uses the degisiee shown in Figure 2. The algorithm marked 'Fiorio’ is
the one with the array based Union-Find and without extréeftabperations, i.e., the one marked 'Array UF, No Flatten’
in Table 3 and Figure 6.

In Figure 7, each plot shows tests on images of the same sizgithuvarying number of 1s. In Figure 8, each plot
shows tests on images with a fixed fraction (1/6) of pixelagdi. In the first case, the total number of pixels in the images
is fixed for each plot and in the second case, the total nunfq@xels is strictly proportional to the number of pixels in
the connected components. All algorithms used are knowndle dinearly as the number pixels in the image increases.
We clearly see that the timing values follow straight lined-igure 8. This confirms that our implementations have the
expected linear property.

In Figures 7 and 8, our modified version of Fiorio’s algorithequires the least amount of time in most test cases. The
modified version of Suzuki's algorithm takes about the sameunt of time as the in-place version of Chang’s algorithm in
many test cases. The Suzuki’s algorithm often uses twiceuat time as Fiorio’s algorithm and the block scan algorithm,
because Suzuki’s algorithm scan the image four times witled™s algorithm and the block scan algorithm only accéss t
image twice. On images with mostly 1s, the block scan algoriand Chang’s algorithm may be the fastest. We anticipate
the block scan algorithm to perform even better if the inpatads already in block structure, such as those output from a
search algorithr?

5. SUMMARY AND FUTURE WORK

We studied a number of strategies to speed up connected camidabeling algorithms. The two most effective strategie
are using a decision tree to minimize the number of neighboasined and using an array to implement Union-Find
algorithms. The first can reduce the scan time by about haipeoed to the basic strategy, and the second can reduce the
total execution time by a factor of five or more. If the imageess large, the speedup could be more than a factor of 100.

The algorithms are tested using random binary images, itdvo& more interesting to see the performance on appli-
cation data. It might be also interesting to provide morerigus analyses of the algorithms presented.

APPENDIX A. THE ALGORITHMS FOR ARRAY BASED UNION-FIND

This appendix presents the algorithms for array based URiod in pseudo code with C++ syntax. In particular, we use
std: : vect or from the Standard Template Library to store the equival@nceyE.

/1 Conbine two trees containing node i and j.
/'l Return the root of the union.
unsi gned uni on(std: : vector<unsi gned>& E,

unsigned i, unsigned j) {
unsi gned root = find(E, i);
ifoor=7) {
unsi gned rootj = find(E, j);
if (root >rootj) root = rootj;
set(E, i, root);
set(E, j, root);

}

return root;

}

/1 Find the root of node ind. Conpress the path.
unsi gned fi ndConpress(std::vector<unsi gned& E,
unsi gned ind) {
unsi gned root = find(E, ind);
set(E, ind, root);
return root;
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Figure 7. Timing results of four different algorithms, the modified'sien of Suzuki's algorithm, the version of Fiorio’s algiin with
the array based Union-Find and without flattening, the aeplversion of Chang’s algorithm, and a block scan algorithm

/1l Find the root of the tree fromnode ind.
unsi gned find(const std::vector<unsi gned>& E,
const unsigned ind) {
unsi gned root = ind;
while (E[root] < root)
root = E[root];
return root;

/1 Set all nodes to point to a new root.
voi d set(std::vector<unsi gned>& E,
unsi gned ind, unsigned root) {

unsigned i = ind;
while (E[i] <i) {
unsigned j = Ei];

E[i] = root;
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Figure 8. Timing results of four algorithms on different size imagetwvixed density (1/6).
i =j;
}
E[i] = root;

/1 Flatten the Union-Find tree.
void flatten(std::vector<unsi gned>& E) {
for (unsigned i =0; i < E. size(); ++ i)
E[i] = E[E[i]];

/1 Flatten the Union-Find tree and rel abel the conponents.
voi d flattenLabel (std::vector<unsi gned>& E) {

unsi gned | abel = 0;
for (unsigned i =0; i < E size(); ++ i)
if (g[i] <i) {
} E[i] = E[E[i]];
el se {
E[i] = | abel;
++ | abel ;
}
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